Overview
By providing full foresight of resource availability, demand, health, and SLA impact, we enable cloud strategies that involve changing provisioned resources in real time.

Executive Summary
Alameda provides AI-driven resource orchestration for OpenShift. More specifically, it provides the intelligence for autonomous balancing, scaling, and scheduling through use of machine learning. Alameda learns the dynamic usage of compute resources in your OpenShift cluster to then predict the future resource demands of each individual pod. This allows us to automatically generate resource configurations for intelligent orchestration.

Statement from Partner
“OpenShift as a platform provides the best user experience for cloud management. ProphetStor’s technology can be exposed to a significant amount of target users through OpenShift’s marketplace and ecosystem.”
– Jeremy Wei, VP of Business Development

Statement from Red Hat Connect
“Developers and architects looking to build new applications in, and for the cloud, or migrate existing applications to a cloud-based infrastructure, partner with Red Hat to develop and deliver more supportable solutions sooner,” said Mike Werner, Sr. Director, Global Technology Partners, Red Hat. “Red Hat certification assures a supportable platform for all types of customer deployment models. Red Hat is thrilled to work with software partners like ProphetStor, resulting in the world’s largest open, and commercially supportable application ecosystem.
ProphetStor’s Alameda is a Red Hat certified container and is available for customer download from the Red Hat certified container registry.

registry.connect.redhat.com/prophetstor/alameda-controller
registry.connect.redhat.com/prophetstor/alameda-datahub

Use Cases

• Avoid Apache Spark OOM
• Deploy containerized Ceph more efficiently – mitigate need to overprovision resources to account for rebalancing

Product Benefits

• Optimize container resource usage
• Enhance pod auto-scaling with AI machine learning
• Automate and simplify day-2 cluster maintenance tasks that are normally done manually
• Pre-emptively address compute resource shortage before they occur